首页> 外文OA文献 >Kinetics of calcination of partially carbonated particles in a Ca-looping system for CO2 capture
【2h】

Kinetics of calcination of partially carbonated particles in a Ca-looping system for CO2 capture

机译:Ca循环系统中部分碳酸化颗粒的煅烧动力学,用于捕集CO2

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Post-combustion CO2 capture based on the Ca-looping process (CaL) is a promising technology under development based on the reversible reaction between CaO and CO2 to form CaCO3 and the regeneration of CaO by calcination of CaCO3 in a rich CO2 atmosphere. This work is focused on the study of the calcination kinetics with typical solid conditions expected in these systems. Calcination rates of carbonated materials derived from two limestones have been measured at different numbers of carbonation–calcination cycles, as a function of the temperature and CO2 partial pressure. It has been observed that the calcination reaction is chemically controlled for particles below 300 μm of particle size, because internal mass transfer is negligible even under the presence of CO2 in the reaction atmosphere. The calcination rate (expressed per moles of initial CaO) depends upon the calcination temperature and CO2 partial pressure, whereas the CaCO3 content and/or particle lifetime do not affect the reaction rate. The basic kinetic model by Szekely and Evans is shown to be valid to fit the new data. On the basis of these results, it is shown that calcination temperatures between 880 and 920 °C could be sufficient to achieve nearly complete calcination conversion at a typical solid residence time of circulating fluidized-bed calciner reactors (2–3 min) in the CaL system.
机译:基于Ca-looping过程(CaL)的燃烧后CO2捕集是一项有前途的技术,该技术基于CaO和CO2之间可逆的反应形成CaCO3以及通过在丰富的CO2气氛中煅烧CaCO3来再生CaO。这项工作的重点是研究在这些系统中预期的典型固体条件下的煅烧动力学。在温度和二氧化碳分压的函数关系下,已经测量了在两个不同的碳化-煅烧循环次数下,源自两个石灰石的碳酸盐物质的煅烧速率。已经观察到,对于粒径小于300μm的颗粒,化学控制煅烧反应,因为即使在反应气氛中存在CO 2,内部的质量转移也可以忽略不计。煅烧速率(以每摩尔初始CaO表示)取决于煅烧温度和CO2分压,而CaCO3含量和/或颗粒寿命不会影响反应速率。 Szekely和Evans提出的基本动力学模型被证明可以有效地拟合新数据。根据这些结果,可以证明,在循环流化床煅烧炉反应器的典型固体停留时间(2-3分钟)中,在880至920°C之间的煅烧温度足以实现几乎完全的煅烧转化。系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号